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single crystal Zn between 200 and 400 kbar (Walsh, 
et al., 1957). 

The P-V-E results along the Hugoniot or shock 
hydrostat can be converted to P-V results along other 
lines in the pressure-volume plane by employing 
an equation of state. Generally the Mie-Gruneisen 
equation is used. This equation was discussed in sec­
tion 4 and arguments presented to show that it is 
quite reliable at temperatures above the characteristic 
Debye temperature of the material. The most critical 
term in this equation of state is the volume dependence 
of the Gruneisen parameter, y (V) (Duvall and Fowles, 
1963). In general, this expression is estimated from 
Slater's formula for the Debye theory extended for 
an isotropic continuum (Slater, 1939). 

v (d
2
P/dP) y=-"2 dP/dV -2/3 (6) 

Dugdale and MacDonald (1953) have modified this 
formula for cubic lattices to read 

v ( d2 (PV2/3 ) /dV2 ) 
y=-"2 d(PV2/3)/dV -1/3 (7) 

The Dugdale-MacDonald formula seems to give better 
results (Rice, et aI., 1958; Chang, 1967) than the Slater 
formula, in spite of the fact that one of the assump­
tions in its derivation has been shown false. The usual 
approach is to transform the P-V relations along the 
Hugoniot to the isotherm passing through the initial 
value Po, Vo, by assuming (ap/aTh is independent of 
pressure or equivalently that yCv/V is a constant 
(Birch, 1968). C v is the specific heat at constant vol­
ume. This relation is very likely inexact but for small 
enough changes in V, i.e., low energy shocks, it should 
be a satisfactory approximation. 

In order to interpret dynamic shock measurements 
of phase changes, one must know the temperature 
as well as P and V at the transition. Again, for rela­
tively low energy shocks, it is sufficient to approximate 
the temperature from the relation along an isentropic 
compression (Walsh and Christian, 1955). 

[ (
ap) (V-Vo)] 

T=To exp - aT v C
v 

(8) 

where Cv and (aP/aT) I· are assumed independent of 
pressure. This equation gives the temperature for 
isentropic compression but neglects the extra rise 
in temperature due to the shock. The temperature 
along the Hugoniot can also be calculated in a more 
elaborate manner by using the Mie-Gruneisen equation 
of state (Goranson, et al., 1955). 

Even with all the above assumptions, one would 
expect the P-V relations along an isotherm to be cor­
rect to within a few percent if the work is done care­
fully. There still remains the question as to whether 
these results, after transforming to the isotherm, should 

be expected to compare with static pressure measure­
ments. Work hardening and strain rate effects may 
alter the pressure distribution, especially in the low 
pressure region. Since there is a disparity between 
dynamic and static yield strength (Duvall and Fowles, 
1963), one might also expect a difference in the static 
and dynamic equations of state. Recently there have 
been some comparisons between static and dynamic 
measurements in the low pressure range with very 
good agreement (Lundergan and Herrmann, 1963; 
Munson and Barker, 1966). Munson and Barker com­
pared their results with static measurements by calcu­
lating best fit a and b coefficients along their isotherm 
using Bridgman's equation. (Equation (1) section 4.) 
They compared these with the same coefficients 
determined from static compression and ultrasonic 
measurements. Ruoff (1967) shows that the agreement 
with the ultrasonic work is very satisfactory especially 
if the a and b for the ultrasonic data are not taken 
from B 0 and B ~ but rather determined again from a 
least squares fit to the ultrasonic measurements. This 
is necessary because the two-coefficient Bridgman 
equation is not a good representation of an equation 
of state. 

The shock measurements give values of P(V, T) 
along the Hugoniot which agree, to within the un­
certainty of the measurement, with Decker's (1965, 
1966, 1971) equation of state for NaCl; this in turn 
agrees with static measurements along the room 
temperature isotherm to better than 2 percent in pres­
sure for a given volume. 

5.2. Phase Transitions Via Shock Measurements 

There are a few phase transitions that have been 
observed both in the static and dynamic measurements. 
Since the pressure in the dynamic case can be deter­
mined experimentally with an accuracy of2 to 3 percent, 
this could help establish the pressure at these transi­
tions. A number of problems arise, however. The temper­
ature at the dynamic measurement is greater than the 
initial starting temperature. Thus, the measured transi­
tion pressure must be corrected to the same tempera­
tures as that of the static measurement. This requires 
a knowledge of dP/dT along the phase line. A more 
difficult problem is centered in the question of rates of 
transition and possible nucleation problems. In general, 
there will be a tendency to exceed the equilibrium 
pressure before a new phase can nucleate, and then 
one wonders if the rapid changes in pressure in the 
shock front might not tend to overshoot the phase 
transition pressure. In fact, if the transition is not rapid 
enough, it may not even occur at all. This is the case for 
melting of bismuth (Duff and Minshall, 1957). Duvall 
and Fowles (1963) claim that melting is a slow transi­
tion. One must also consider the slow nature of many 
solid state reactions (Roy and Dachille, 1967). In deter­
mining the pressure at the transitions, a correction for 
the strength of material must be applied before com-
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paring with static data. There is also the question as to 
whether the plastic shear strain in the shock might 
not alter the transition pressure. 

a. Bismuth I-II Transition 

Duff and Minshall (1957), Hughes, et al. (1961) and 
Larson (1967) have all measured the Bi I-II transition 
by shock techniques. The observed break 10 the 
Hugoniot was identified as the Bi I-II transition by 
Duff and Minshall who measured the temperature 
dependence of the phase transition and found excellent 
agreement with the slope of the static phase line. Duff 
and Minshall observed the dynamic transition pressure 
to be about 2.7 kbar above the accepted static equilib­
rium value. They assumed that Up was half the measured 
free surface velocity when the plastic wave reflected 
from the free surface. They observed no elastic wave 
and made no strength of material correction to account 
for non-hydrostatic compression. Hughes, et al., used 
the same assumption concerning the particle velocity 
but their technique, which was quite different, had too 
much scatter from sample to sample. Their best esti­
mate of the transition pressure would be 26 ± 3 kbar 
after correcting to 25°C and for strength of material 
(Larson, 1967). Larson measured the pressure using an 
impedance matching technique between Bi and a piezo­
electric quartz gauge. After the appropriate corrections, 
Larson's value for pressed Bi is 25.4 ± O.S kbar and for 
cast Bi is 25.9 ± 1.2 kbar, in good agreement with static 
equilibrium measurements. (The values given in table IS 
are uncorrected.) None of these measurements showed 
any variation of the transition pressure for shock transit 
times between 10- 6 to 10- 9 seconds. 

A comparison of these three measurements is given in 
table IS. P HY is the pressure in the elastic wave, U ZI, 

UpZ, Pz, and Vz/Vo are the shock velocity, particle 
velocity, pressure and relative volume in the first plastic 
wave. T is the temperature behind the first plastic 
shock. The particle velocity of Duff and Minshall is 
probably too large which could be due to experimental 
error as discussed by Larson. The following paragraph 
shows that generally the appropriate particle velocity 
is less than half the free surface velocity when an elastic 
wave precedes the plastic wave. This also would indicate 
that the first two values of UIJZ in the table may be large. 

TABLE 18. Bi transition by shock measurements 

PHY V 21 U,J2 P2 V2IVo T Reference 
(kbar) 

2.049 0.135 27.15 0.943 42°C Duff & Minshall 
(1957) 

2.054 .128 25.7 .938 Hughes, et al. 
(1961) 

2.0 2.060 .126 25.55 .939 Larson (1967) 
cast 

2.4 2.060 .125 25.2 .941 Larson (1967) 
pressed 
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This would increase his measured pressure by 0.7 
kbar. 

Let us consider the corrections mentioned in the 
above paragraph. From (1) and (2) 

(9) 

for the elastic precurser wave and for the following 
plastic shock 

Now assume an elastic decompression wave reflects 
from the free surface and moves back into the material, 
with essentially the same velocity as the initial elastic 
wave. This decompression wave interacts with the 
plastic shock before it strikes the surface, slightly 
lowering the density behind the shock giving: 

U~z=y'(Pz-Pd (Vo-V'z) > Up2. (ll) 

The appropriate specific volumes in the above equation 
are pictured in figure 6. In fact, from the interaction 

~-~ ---------

I I I J 

Volume 

FIGURE 6. The elastic and plastic Hugoniot showing the effect of the 
returning elastic wave on the forward plastic compression 
wave. 

(12) 

Vo- V~ > VI - Vz because the elastic wave Hugoniot 
is steeper than the plastic wave Hugoniot and the volume 
change for a given pressure change is less at higher 


